国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Scientific Data Center
中文 | Eng 数据审核 登录 反馈
专项名称 : 政府间国际科技创新合作重点专项
项目名称 : 离子轰击条件下反应磁控沉积高熵合金氮化物薄膜技术研究与开发
项目编号 : 2022YFE0122900
说明 :

制造业是关系国家战略地位和体现综合国力的重要支柱产业,是衡量一个国家工业化发展水平的重要标志。目前以数控机床为基础的现代制造业正朝着高速、高效、高精密、干式、绿色切削加工方向发展,这对切削刀具技术提出了新的要求。尤其随被加工材料能级的不断提高(高精、高效),无油、干式等特殊加工要求的提出(绿色、环保),传统切削刀具材料技术已很难满足要求,开发先进的切削刀具涂层技术尤为迫切和重要。切削刀具表面涂层技术是近几十年来应市场需求发展起来的一种材料表面高值化、功能化的改性技术,主要是在真空环境中采用化学或物理的气相沉积技术,在刀具上沉积微纳米级的高性能薄膜。该技术不仅能保持刀具基体的良好强韧性,也能赋予刀具更好的表面硬度、耐磨损性、抗红硬性、以及表面光洁度等性能,可大幅提高刀具的服役寿命和加工效率。本项目针对高性能刀具涂层高质量制备的关键问题,通过国际技术合作,开展高熵合金氮化物薄膜成分优化;离子源活化氮对低温离子轰击效果的影响;磁控管脉冲中频电源参数对反应溅射过程中离子轰击生长薄膜的影响;在反应溅射过程中,衬底的直流、交流和脉冲偏压参数对生长薄膜的离子轰击水平的影响;水平磁控管不平衡、磁控管供电模式参数和衬底偏压对高熵硬质薄膜沉积的形貌、晶化程度、相组成和化学计量比,以及物理性能(附着力、耐磨性、硬度)的影响;针对汽车、交通运输、航空航天等高端制造领域用高效高速切削刀具,展开高性能高熵合金氮化物薄膜工艺实验,分析和总结实现高效高质量刀具涂层制备的最优工艺参数和关键工艺因素,解决其关键的工艺问题,获得最佳的工艺实现途径方法。本项目通过开展国际科技合作,旨在联合研发一种磁控溅射复合离子源沉积技术,该技术基于离子源离化形成离子轰击条件对高性能高熵合金氮化物薄膜沉积过程的作用机理研究,开展磁场、电场和气体流导条件下等离子体分布多场域调控问题分析,发展电磁场耦合等离子体调控技术,以及高熵合金氮化物薄膜成分的优化设计与模拟计算,建立高性能高熵合金氮化物薄膜成分的设计规范,并在典型样件上可控制备出高性能刀具涂层,评价其使用性能,最终获得高性能高熵合金氮化物薄膜的可控制备工艺规范和工程化推广应用。本项目研究团队依托于教育部和陕西省薄膜技术与光学检测重点实验室和科技部“光学先进制造与光电检测”示范型国际科技合作基地,近二十年来,通过积极对白俄斯的技术引进,并与中国科学院宁波材料技术与工程研究所,中国兵器科学院宁波分院等单位合作研究,在设备研发及检测技术方面构建了较为完备的研究平台,积累了良好的国际合作经验。项目合作方白罗斯共和国国立信息与无线电电子大学薄膜实验室,在磁控溅射阴极源、离子源及离子束设备方面的研究方面具有丰富的经验,将为项目的核心装置离子源辅助磁控溅射装置研制提供先进的技术支持,并协助进行高性能高熵合金氮化物薄膜制备工艺实验的开展。项目预期研制1台满足指标的离子源复合磁控溅射样机并建立起相应的涂层制备工艺规范;实现高速钢钻头表面高性能高熵合金氮化物薄膜的高质量制备,要求薄膜的厚度不低于2μm,划痕法测量膜基结合力>100 N,抗氧化温度>1100℃,显微硬度>75 GPa,600℃下施加200g载荷时薄膜的磨损值小于1. 01x10-5mm3/(N·m),实现使用寿命是无涂层钻头的10倍以上。项目的实施将实现我国在先进涂层刀具制造领域的技术突破和创新,其应用领域亦可扩展至航空航天、军工等领域。



英文说明 :

The manufacturing industry is a crucial pillar industry that is related to a nation's strategic position and reflects its comprehensive national strength. It is also an important indicator for measuring a country's level of industrial development. Currently, modern manufacturing, which is based on numerical control machine tools, is developing towards high speed, high efficiency, high precision, dry and green cutting and machining. This has put forward new requirements for cutting tool technology. In particular, with the continuous improvement of the energy level of the materials to be machined (high precision and high efficiency), and the introduction of special processing requirements such as oil-free and dry (green and environmental protection), traditional cutting tool material technology can hardly meet the requirements. The evelopment of advanced cutting tool coating technology is particularly urgent and important. Cutting tool surface coating technology is a material surface high-value and functional modification technology that has developed in response to market demand over the past few decades. It mainly uses chemical or physical vapor deposition technology in a vacuum environment to deposit high-performance films at the micro and nano levels on cutting tools. This technology can not only maintain the good toughness and strength of the tool substrate, but also endow the tool with better surface hardness, wear resistance, anti-red hardness, and surface finish, thereby significantly improving the service life and machining efficiency of the tool. This project focuses on the key issues of high-quality preparation of high-performance tool coatings. Through international technological cooperation, it carries out the following research: optimization of the composition of high-entropy alloy nitride films; the impact of ion source activated nitrogen on the effect of low-temperature ion bombardment; the influence of magnetron pulse medium frequency power supply parameters on ion bombardment during reactive sputtering; the effect of substrate direct current, alternating current, and pulse bias parameters on ion bombardment during reactive sputtering; the influence of horizontal magnetron imbalance, magnetron power supply mode parameters, and substrate bias on the morphology, degree of crystallization, phase composition, and chemical stoichiometry of high-entropy hard films, as well as their physical properties (adhesion, wear resistance, hardness); and the development of high-performance high-entropy alloy nitride film processes for high-efficiency and high-speed cutting tools used in high-end manufacturing fields such as automotive, transportation, and aerospace. The project aims to analyze and summarize the optimal process parameters and key process factors for high-efficiency and high-quality tool coating preparation, solve key process problems, and obtain the best process implementation methods. Through international scientific and technological cooperation, this project aims to jointly develop a magnetron sputtering composite ion source deposition technology. Based on the study of the mechanism of ion source ionization and ion bombardment in the deposition process of high-performance high-entropy alloy nitride films, the project will analyze the multi-field regulation of plasma distribution under magnetic, electric, and gas flow conditions, develop electromagnetic field coupled plasma regulation technology, and optimize the design and simulation calculation of high-entropy alloy nitride film composition. It will establish design specifications for high-performance high-entropy alloy nitride film composition, controllably prepare high-performance tool coatings on typical samples, evaluate their performance, and ultimately obtain controllable preparation process specifications and engineering promotion and application for high-performance high-entropy alloy nitride films. The research team of this project is based on the Key Laboratory of Film Technology and Optical Detection of the Ministry of Education and Shaanxi Province, and the Demonstration Base for International Scientific and Technological Cooperation in Optical Advanced Manufacturing and Photoelectric Detection of the Ministry of Science and Technology. Over the past two decades, the team has actively introduced technology from Belarus and cooperated with research institutions such as the Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences, and the Ningbo Branch of the Chinese Academy of Ordnance Sciences. A relatively complete research platform has been established in equipment development and detection technology, and good international cooperation experience has been accumulated. The project partner, the Laboratory of Thin Films of the Belarusian State University of Information and Radio Electronics, has rich experience in the research of magnetron sputtering cathode sources, ion sources, and ion beam equipment. It will provide advanced technical support for the development of the core device, the ion source-assisted magnetron sputtering device, and assist in the preparation process experiments of high-performance high-entropy alloy nitride films. The project is expected to develop one ion source composite magnetron sputtering prototype machine and establish corresponding coating preparation process specifications. It aims to achieve high-quality preparation of high-performance high-entropy alloy nitride films on the surface of high-speed steel drills, with the following requirements: film thickness of no less than 2 μm, scratch test adhesion strength > 100 N, oxidation resistance temperature > 1100°C, microhardness > 75 GPa, and wear value of less than 1.01×10⁻⁵ mm³/(N·m) under a load of 200 g at 600°C. The service life of the coated drill bit is expected to be more than 10 times that of an uncoated drill bit. The implementation of the project will achieve a technological breakthrough and innovation in the field of advanced coating tool manufacturing in China, and its application fields can also be extended to aerospace, military, and other fields.

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心