国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Data Center
中文 | Eng 数据审核 登录 反馈
名称 : Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior
发表日期 : 2021-01-27
摘要 :

Gradient boosting decision tree (GBDT) machine learning (ML) method was adopted for the fifirst time to automatically recognize and conduct quantitative statistical analysis of boundaries in bainitic microstructure using electron back-scatter diffraction (EBSD) data. In spite of lack of large sets of EBSD data, we

were successful in achieving the desired accuracy and accomplishing the objective of recognizing the boundaries. Compared with a low model accuracy of <50 % as using Euler angles or axis-angle pair as characteristic features,the accuracy ofthe model was signifificantly enhanced to about 88 % when the Euler angle was converted to overall misorientation angle (OMA) and specifific misorientation angle (SMA) and considered as important features. In this model, the recall score of prior austenite grain (PAG) boundary was ∼93 %, high angle packet boundary (OMA>40◦) was ∼97 %, and block boundary was ∼96 %. The derived outcomes of ML were used to obtain insights into the ductile-to-brittle transition (DBTT) behavior. Interestingly, ML modeling approach suggested that DBTT was not determined by the density of high angle grain boundaries, but signifificantly inflfluenced by the density of PAG and packet boundaries. The study underscores that ML has a great potential in detailed recognition of complex multi-hierarchical microstructure such as bainite and martensite and relates to material performance.

网址 : www.elsevier.com/locate/matchar
领域 : 冶金工程
出版公司 : Journal of Materials Science & Technology
出版国家 : CN
附件下载
重点项目名称 : 低温高压服役条件下高强度管线用钢-高钢级管线钢低温强韧化控制的冶金学原理及关键技术数据集

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心