极端流变行为材料短流程工艺-结构-形态-性能之间的关系 是解决极端流变材料成型效率低、制品性能提升困难的关键 科学问题之一。为此,本研究分别以 UHMWPE 和聚氨酯镜 片原料为极端流变行为高分子的典型研究对象,系统开展了 极端流变行为材料短流程加工过程中加工工艺-结构-性能之 间的关系研究。 UHMWPE 方 面 , 结 合 理论 模拟 和 实验 分 析, 阐明 了 UHMWPE 在拉伸流场中的流变行为特性和熔融塑化机理; 利用光谱学方法研究了不同拉伸流场作用下 UHMWPE 初 生结构的在加工过程中的分子运动特点和结构演变规律;基 于理论模型的完善和实验实例验证,研制出适用于极端流变 行为材料的圆盘式拉伸流变仪和拉伸形变支配塑化模拟实 验样机,并进行了针对不同高分子材料拉伸流变特性表征的 实例验证;在此基础上,进一步研究了 UHMWPE 功能复合 材料在耦合拉伸/剪切流场作用下的混合动力学,阐明了 UHMWPE的改性及其功能化复合体系的流变性能/结构演化 的机制和调控方式。 光学聚氨酯方面,我们研究了光学聚氨酯短流程工艺-结构性能之间的协同关系,构建加工参数-微观结构-性能的规律。 在唯象模型的基础上,根据自催化反应模型,对 XDI+BES 范例体系低温固化行为进行了研究,揭示了不同温度下固化 度与反应时间的关系,建立了玻璃化转变温度、固化温度与 时间的相关性模型,为聚氨酯镜片固化工艺的优化提供理论 依据。 以上研究成果可为极端流变行为材料短流程高效加工提供理论依据,突破我们极端流变行为材料短流程工艺的技术瓶颈。
Short process technology-microstructure-dynamics relationships for extremely rheological materials is one of key scientific questions in the field of extremely rheological materials. Thus, we utilized ultrahigh molecular weight polyethylene (UHMWPE) and optical resins as models and conducted a systematic study on short process technology-microstructure-dynamics relationships with an aim to shorten the process routing, reduce the energy consumption and improve the performances of the final products. In terms of UHMWPE, we revealed characteristics of the UHMWPE in the extentional flow field and corresponding melt-plasticizing mechanism with regulating methods. With the spectral approaches, we studied the molecular motion and structural evolution of UHMWPE nascent powders in the manufacturing process. We developed the disc extensional rheometer and prototype of extentional deformation-dominated plasticizing simulator, and verified and exemplified via assessments of extentional rheological properties for various polymers. We further studied the mixing dynamics of UHMWPE and its composites in coupled extentional/shear flow fields, and revealed the mechanisms and regulating methods of modification/functionalization of UHMWPE and its composites. As for optical polyurethane, we have probed the structure-morphology-property correlation of optical polyurethanes and established the processing parameter-microstruture-property relationship, and established the optimization of processing parameters for curing techniques with domestic ingredients. Based on the phenomenological model and the autocatalytic reaction model, we studied the low-temperature curing behaviors of XDI+BES systems, revealed the relationships between reaction temperature and curing degree/time, and finally established the correlation models of glass transition temperature, curing temperature and time. We further studied the gelation behaviors of the selected systems and demonstrated the evolution process of its physical properties and provided theoretical support for optimization of processing parameters for optical polyurethane routing. The obtained results can establish a theoretical basis for the short-process and efficient processing of extreme rheological materials, which can help promote the development of high-efficiency processing technologies for the UHMWPE, and breaking the technical bottleneck of the extremely rheological materials.