国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Data Center
中文 | Eng 数据审核 登录 反馈
奥氏体不锈钢S相渗层技术的意义
2016-10-20 16:45:05 作者:本网整理 来源:钢之家网站

20141220110909_63855.jpg

 

  奥氏体不锈钢具有良好的耐蚀性、优良的韧性和可加工性能,在许多领域获得广泛应用,但耐摩擦磨损性能较差、抗疲劳性能低,严重影响了不锈钢零部件的使用寿命。

  试验证明,不锈钢高温渗氮后淬火,即在1050~1150℃的真空炉中使氮溶解在不锈钢工件的表层,然后快速冷却下来,使氮化物来不及析出,从而可在工件表面形成含氮固溶强化的奥氏体渗氮层。高氮表面处理后,不仅提高了奥氏体不锈钢表面的强度、硬度和耐磨性,且心部仍保持固溶处理的组织和性能。因为这种渗氮层的晶格参数与γ相不同,被称之为“S相”。在S相中,氮原子固溶于奥氏体晶格内部,且抑制氮化铬在晶界处析出,因此在不降低奥氏体不锈钢耐蚀性能的前提下,显著提高了奥氏体不锈钢的表面硬度。由此发展起来的不锈钢表面S相改性技术成为不锈钢表面处理技术发展的重要里程碑。实验证明,将含碳气体代替氮气引入离子处理的气氛中,也能获得一层类似于渗氮层的S相硬化层。

  但是,传统的渗氮、渗碳技术虽然提高了不锈钢零件表面硬度、耐磨性和疲劳强度,但由于渗氮、渗碳温度高,形成了氮化物和碳化物的沉淀相,牺牲了不锈钢的耐蚀性。同时,由于不锈钢表面形成一层致密的氧化膜,阻碍了氮、碳原子的渗入扩散。这些因素严重地制约了不锈钢渗氮、渗氮表面处理技术的发展和推广应用。

  与传统渗氮、渗碳技术不同,S相渗层技术是一种低温渗氮/渗碳技术。例如低温离子渗氮技术,将渗氮温度降低至450℃以下,渗入的氮形成固溶奥氏体,显著提高了奥氏体不锈钢的硬度,同时抑制渗氮过程中铬的氮化物析出,保持了不锈钢的耐腐蚀性能。低温离子渗氮技术,可获得几十微米的单相含氮膨胀奥氏体相。低温离子渗碳具有渗层均匀、韧性好、承载能力强、硬度梯度平缓、渗碳效率高等优点。另据报道,通过对不锈钢表面进行氟化处理,消除表面的氧化膜,同时在试样表面形成氟化膜,这种氟化膜提高了活性氮的吸附和扩散渗入,可使不锈钢的渗氮温度降低到300℃。

  渗氮奥氏体不锈钢可提供一个较强的亚表层来支承干滑动时所形成的氧化膜,比未渗氮试样能承受更高负荷。渗氮钢的磨损是氧化磨损机制,而未渗氮钢的磨损则是粘着和塑性变形机制。

  奥氏体不锈钢通过低温渗氮/渗碳,获得含氮/碳固溶饱和的扩散层,即S相渗层,不仅提高了不锈钢表面硬度,而且还提高了不锈钢的耐蚀性。例如,AISI 304不锈钢在400℃、4h离子渗氮后,在5.5%NaCl溶液中的腐蚀电位提高了三倍,在3.5%的NaCl溶液中S相耐蚀性可以提高75%。低温渗氮提高了不锈钢的耐蚀性,因此延长了不锈钢零件的使用寿命,例如核反应堆奥氏体不锈钢控制棒处理后寿命由一年延长至三年以上。

 

更多关于材料方面、材料腐蚀控制、材料科普等等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注国家材料腐蚀与防护科学数据中心http://www.ecorr.org 

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心