Multidrug resistance proteins (MDRPs), which are implicated in the mediation of multidrug resistance in tumors, represent the main obstacle to successful chemotherapy. As curcumin (Cur) exerts inhibitory effects on both the expression and function of MDRPs, a nanocarrier for the co-delivery of Cur and doxorubicin (DOX) was prepared to overcome MDR tumors through their synergistic effects. Owing to the overexpression of legumain in tumors, the release profile of DOX from this nanocarrier was designed to be legumain modulated, which was achieved by bridging DOX to a basic material (chitosan) with a legumain-sensitive peptide. Compared with nanoparticles that only contain DOX, the coadministration of DOX and Cur significantly inhibited multidrug resistance (P < 0.05) in a multidrug-resistant cancer cell model (MCF-7/ADR cell line), with cytotoxicity to normal cells (L929 cell line). Such inhibition could be ascribed to the increased DOX accumulation in the MCF-7/ADR nucleus. The co-delivery system exhibited good anticancer effects through prolonged circulation time, improved tumor-targeting efficiency, elevation of the tumor inhibition activity, and the suppression of MDRP expression. These data revealed the enormous potential of this co-delivery system for cancer therapy, especially in the later stages where multidrug resistance may develop.