国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Data Center
中文 | Eng 数据审核 登录 反馈
名称 : Numerical Modeling of EBCHM for Large-Scale TC4 Alloy Round Ingots
发表日期 : 2018-07-31
摘要 :

 Titanium alloys are light in weight, and have very high tensile strength as well as toughness. With these distinctive advantages, titanium alloys are widely accepted as one of the potential future materials. However, the high cost of both raw materials and processing has limited their applica- tions. To reduce the cost, electron beam cold hearth remelting (EBCHR) has emerged as a key process in producing high-quality titanium alloy ingots and electrodes.

Compared to vacuum arc remelting (VAR), EBCHM is able to effectively consolidate both sponge and scrap material while removing unde- sired impurities and inclusions, such as low-density and high-density inclusions.Thus, EBCHM has become a possible solution for producing single-melt ingots, the application of which will signiftcantly reduce the energy and time costs of titanium alloy

plates. EBCHM also breaks through the length limitation of VAR titanium alloy ingots, and pro- duces ultralong ingots, over 10 m in length, for applications of high-quality seamless tubes.

Although EBCHM shows many advantages, the technique also faces challenges which requiring solutions. Due to the surging of the saturated vapor pressure of additive alloy elements at high temper- ature, elements like aluminum may lose 30% during the EBCHM process. Because of this serious evap- oration loss, the quality of TC4 ingots manipulated by EBCHM suffers from inhomogeneous composi- tion segregation. Even though extra aluminum has been provided in the feedstock to compensate the continuous evaporation loss on the surface of the melt, composition control is still a serious problem since none of the stirring techniques can be applied. To reduce the defects, a robust understanding of the EBCHM process, namely the evolution of tempera- ture, flow and solidiftcation during alloy casting, isurgently required. Meanwhile, a sound system for process control should be developed to homogenize the composition in the melt during EBCHM.

Unusually, unlike other casting techniques, EBCHM utilizes a high-energy density electron beam as the heat source for continuous casting of alloy ingots under vacuum condition. The electron beam is set to move following different patterns to scan the melt surface under high frequency. The beam target is subject to a high local flux, which in turn produces a strong temperature gradient in that area. By adjusting the beam-scan pattern and frequency, the temperature gradient on the molten surface can be controlled, and the evaporation of alloy elements can be restrained.In addition, elaborate control of the surface temperature and casting speed can modify the curvature of the solid– liquid interface in the mold, which is a key factor for producing ingots with a perfect crystal structure.

Recently, the ftnite element method was intro- duced to predict temperature evolution during the EBCHM process.The purpose is to declare the evolution of the solid–liquid front in the ingots, since they are directly connected with ingot quality. However, for most reported in the literature, the temperature on the surface was set as constant in order to simplify the model. Only a few attempts have been made to involve the influence of beam- pattern operation conditions on the melt surface and the effect of overflow from the cold hearth on flow evolution.In the present manuscript, an approximating beam-pattern for casting TC4 ingots, with a diameter of 260 mm, has been designed and tested by numerical modeling to discover the tem- perature evolution on the surface of the mold. To control the movement of the beam, a user-deftned function (UDF) was compiled and added to the CFD model. In addition, the evolution of the solid–liquid interface for large-scale TC4 round ingots was also investigated in different EBCHM operation condi- tions to provide details for the elaborate control ofTC4 ingot manipulation. The purpose is to restrain inhomogeneous composition segregation, and improve the quality of large-scale TC4 round ingots.


网址 : https://link.springer.com/article/10.1007/s11837-018-3048-0
领域 : 金属材料
出版公司 : JOM
出版国家 : US
附件下载
重点项目名称 : 低成本高耐蚀钛及钛合金管材与高品质钛带制造技术开发及应用

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心