国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Data Center
中文 | Eng 数据审核 登录 反馈
专项名称 : 政府间国际科技创新合作
项目名称 : 高性能无稀土MnBi纳米晶永磁合金材料的研发
项目编号 : 2019YFE0122900
说明 :

以稀土资源为主导的稀土永磁材料产量日益增加,但有限的稀土资源和庞大的市场需求之间的矛盾越来越突出。目前国内外研究者都在寻求不含稀土和稀贵元素的新型高性能永磁材料。研究发现,锰铋低温相具有强的磁晶各向异性和正的矫顽力温度系数,是一种非常有潜在应用价值的新型高温型无稀土永磁材料。越南矿产资源丰富,锰矿探明储量超千万吨,但是锰资源利用严重不足。中越双方课题组在锰铋永磁合金方面都开展了长期的研究。越方侧重于锰铋母合金制备、快淬工艺优化、各向异性压制技术以及复合磁体研发。中方在无稀土锰基合金的成分调控、相变、微观结构与磁性能优化及合金粉末的球磨制备方面进行了系统的研 究。中越双方优势互补,在本项目中将密切合作,加强中越两国学者之间的交流,共同促进高性能锰基永磁材料的发展和应用,提升越南锰资源的高附加值利用,同时解决我国锰资源相对不足的问题。

项目包括以下关键科学问题:(1)MnBi合金的低温相相变机理:在结构上实现完全低温相转变是MnBi合金表现出优良永磁性能的基础。而要在结构上实现完全低温相转变,必须从机理研究入手,对MnBi合金的低温相相变机理有一个详尽的了解,才能较好地在结构上实现MnBi合金的低温相转变。因此,诠释MnBi合金的低温相相变机理是本项目需要解决的第一个关键科学问题。通过明确不同制备工艺和元素掺杂MnBi合金低温相相变的行为和内在机制,为研究合金的微观结构和磁性能奠定基础。(2)MnBi低温相合金微观结构的调控机制:材料的微观结构如相成分、相结构、原子局域结构以及晶粒大小、成分分布和边界相厚度等直接影响着材料的磁性能。为了提高MnBi合金的永磁性能,必然也要求我们研究制备工艺和元素掺杂对低温相MnBi合金微观结构的影响。阐明制备工艺和元素掺杂对MnBi低温相合金微观结构的调控机制是进一步优化合金磁性能的重要基础,是本项目需要解决的第二个关键科学问题。(3)制备工艺和元素掺杂通过微观结构调控MnBi合金磁性能的内在机制:提高合金的永磁性能是MnBi合金研究的最终目标之一。阐明制备工艺和元素掺杂通过微观结构调控MnBi合金磁性能的内在机制,为人们提供可能的途径来提高MnBi合金的永磁性能,是本项目拟解决的第三个关键科学问题。项目包括以下关键技术如下:(1)高纯低温相MnBi合金材料的关键制备技术:在MnBi母合金熔炼过程中,Mn 较易挥发和发生偏析,而Bi 原子较重,熔炼时易沉积。此外,在MnBi低温相转变的包晶反应过程中,Mn极易从MnBi相中偏析,同时还存在与低温相晶体结构相近的高温相以及Bi单质相等,很难获得高纯度的低温相LTP。通过控制合金中Mn、Bi及掺杂元素的原子比以及选择适当的熔炼工艺和后续热处理工艺是获得高纯低温相MnBi合金材料的关键。(2)高磁能积MnBi永磁合金的关键制备技术:高磁能积是MnBi永磁材料使役性能的关键指标之一,其与MnBi低温相纯度、内部缺陷/应力、磁取向、磁畴结构等密切相关。粉末磁选、磁场热处理及磁化取向压制等制备工艺技术的优化选择是获得高磁能积MnBi永磁合金的关键。

项目会揭示调控MnBi永磁合金相变、微观结构和永磁性能的可能途径;开发出1~2种锰铋永磁合金(磁能积>13MGOe),开展小批量生产示范;促进中-越两国间先进材料技术创新合作与技术转移,提升我国无稀土永磁材料研究在国际上的影响力,推进“一带一路”建设;发表高水平论文8篇,申请发明专利3项,培养研究生3名。开展交流3~5次,参加国际会议3次。

项目成果将能有效促进高性能无稀土MnBi永磁材料的发展和应用,提升越南锰资源的高附加值利用,解决我国锰资源相对不足的问题;同时将加强两国学者之间的交流,提升我国无稀土永磁材料研究在国际上的影响力,促进中越两国间先进材料技术创新合作与技术转移,服务中国-越南政府间的科技外交,推进我国“一带一路”的建设。

根据本项目的特点,研发过程的主要数据产生源头为MnBi合金的低温相相变机理研究、MnBi低温相合金微观结构的调控机制研究、制备工艺和元素掺杂通过微观结构调控MnBi合金磁性能的内在机制研究、高纯低温相MnBi合金材料的关键制备技术研究、高磁能积MnBi永磁合金的关键制备技术研究。

英文说明 :

The production of rare-earth permanent magnet materials, which are dominated by rare-earth resources, is increasing day by day, but the contradiction between limited rare-earth resources and huge market demand is becoming more prominent. Currently, researchers both domestically and abroad are seeking new high-performance permanent magnet materials that do not contain rare-earth elements or expensive rare metals. Research has found that the low-temperature phase of manganese-bismuth has strong magnetic crystal anisotropy and a positive temperature coefficient of coercivity, making it a highly potential new high-temperature, rare-earth-free permanent magnet material. Vietnam is rich in mineral resources, with confirmed manganese ore reserves exceeding tens of millions of tons, but the utilization of manganese resources is seriously insufficient. Research teams from both China and Vietnam have been conducting long-term research on manganese-bismuth permanent magnet alloys. The Vietnamese side focuses on the preparation of manganese-bismuth master alloys, optimization of rapid quenching processes, anisotropy suppression techniques, and the development of composite magnets. The Chinese side has been conducting systematic research on the composition control of rare-earth-free manganese-based alloys, phase transitions, optimization of microstructure and magnetic properties, and ball milling preparation of alloy powders. Both sides complement each other's strengths, and in this project, they will collaborate closely to enhance exchanges between scholars from China and Vietnam, promote the development and application of high-performance manganese-based permanent magnet materials, increase the high value-added utilization of manganese resources in Vietnam, and address the relative shortage of manganese resources in China.

The project involves the following key scientific issues:

  1. Low-temperature phase transformation mechanism of MnBi alloy: Achieving complete low-temperature phase transformation structurally is the basis for excellent magnetic properties of MnBi alloys. Detailed understanding of the low-temperature phase transformation mechanism of MnBi alloys is essential to achieve the complete low-temperature phase transformation structurally. Thus, interpreting the low-temperature phase transformation mechanism of MnBi alloys is the first key scientific issue that needs to be addressed in this project. By clarifying the behavior and intrinsic mechanisms of low-temperature phase transformation of MnBi alloys under different preparation processes and element doping, the foundation for studying the microstructure and magnetic properties of the alloy can be laid.
  2. Control mechanism of microstructure of low-temperature phase MnBi alloy: The microstructure of materials, such as phase composition, structure, atomic local structure, grain size, composition distribution, and boundary phase thickness, directly influences the magnetic properties of the material. In order to improve the permanent magnetic properties of MnBi alloys, it is necessary to study the impact of preparation processes and element doping on the microstructure of low-temperature phase MnBi alloys. Elucidating the control mechanism of microstructure of low-temperature phase MnBi alloys by preparation processes and element doping is an important foundation for further optimizing the alloy's magnetic properties, which is the second key scientific issue that needs to be addressed in this project.
  3. Intrinsic mechanism of preparation processes and element doping controlling the magnetic properties of MnBi alloys through microstructure regulation: Improving the permanent magnetic properties of the alloy is one of the ultimate goals of MnBi alloy research. Clarifying the intrinsic mechanism of preparation processes and element doping in controlling the magnetic properties of MnBi alloys through microstructure regulation provides possible avenues for enhancing the permanent magnetic properties of MnBi alloys, and this is the third key scientific issue that the project aims to address.

The project also includes the following key technologies:

  1. Key preparation technology for high-purity low-temperature phase MnBi alloy materials: In the process of smelting MnBi master alloys, manganese is easily volatile and segregates, while bismuth atoms are heavy and tend to deposit during smelting. In addition, during the inclusion reaction process of MnBi low-temperature phase transformation, manganese easily segregates from the MnBi phase, and there are also high-temperature phases with crystal structures similar to the low-temperature phase and elemental bismuth, making it difficult to obtain high-purity low-temperature phase LTP. Controlling the atomic ratios of manganese, bismuth, and doping elements in the alloy, as well as selecting appropriate smelting processes and subsequent heat treatment processes, are crucial to obtaining high-purity low-temperature phase MnBi alloy materials.
  2. Key preparation technology for high energy product MnBi permanent magnetic alloy: High energy product is one of the key indicators of the performance of MnBi permanent magnet materials, and it is closely related to the purity of the low-temperature phase of MnBi, internal defects/stresses, magnetic orientation, magnetic domain structure, etc. The optimization and selection of preparation processes such as powder magnetic selection, magnetic field heat treatment, and magnetic orientation suppression are crucial for obtaining high energy product MnBi permanent magnetic alloys.

The project will reveal possible pathways to regulate the phase transformation, microstructure, and magnetic properties of MnBi permanent magnetic alloys; develop 1-2 manganese-bismuth permanent magnetic alloys (with magnetic energy product >13 MGOe) and carry out small-scale production demonstrations; promote advanced material technology innovation cooperation and technology transfer between China and Vietnam, enhance the international influence of China's research on rare-earth-free permanent magnetic materials, advance the construction of the "Belt and Road" Initiative; publish 8 high-quality papers, apply for 3 invention patents, and train 3 graduate students. The project will organize 3-5 exchanges and participate in 3 international conferences.

The project results will effectively promote the development and application of high-performance rare-earth-free MnBi permanent magnetic materials, enhance the high value-added utilization of manganese resources in Vietnam, and address the relative shortage of manganese resources in China. It will also strengthen exchanges between scholars from both countries, enhance the international influence of China's research on rare-earth-free permanent magnetic materials, promote advanced material technology innovation cooperation and technology transfer between China and Vietnam, serve the science and technology diplomacy between China and Vietnam, and advance the construction of the "Belt and Road" Initiative.

Considering the characteristics of this project, the main sources of data generation in the research and development process are the study of the low-temperature phase transformation mechanism of MnBi alloys, the investigation of the control mechanism of microstructure of low-temperature phase MnBi alloys, the research on the intrinsic mechanism of preparation processes and element doping controlling the magnetic properties of MnBi alloys through microstructure regulation, and the study of key preparation technologies for high-purity low-temperature phase MnBi alloy materials and high energy product MnBi permanent magnetic alloys.

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心