咪唑啉类缓蚀剂对 P110 钢在 CO₂ 注入井 环空环境中应力腐蚀行为的影响

刘然克¹,王立贤²,刘智勇¹,杜翠薇¹,李晓刚¹

(1. 北京科技大学 腐蚀与防护中心,北京 100083;2. 北京三聚环保新材料股份有限公司,北京 100080)

摘 要:目的 研究咪唑啉类缓蚀剂对 P110 钢在 CO₂ 注入井环空环境中的应力腐蚀(SCC) 行为的影响,为 CO₂ 注入井环空环境腐蚀防护方法的建立提供参考和依据。方法 在实验室模拟的 CO₂ 驱注井环空环境 中进行应力腐蚀试验、电化学测试和腐蚀形貌分析。根据现场提取的 CO₂ 注入井环空介质的成分分析结果 配制模拟溶液,选用咪唑啉类缓蚀剂,调节模拟液 pH 至 4。通入高纯 N₂ 进行除氧,以防止硫化物氧化。 应力腐蚀试样采用三点弯试样,通过将试样的挠度控制为设定值来控制加载载荷。应力腐蚀试验和电化 学试验均在密闭高压釜内进行。实验结束后,采用扫描电镜对腐蚀形貌进行观察。结果 在 CO₂ 注入井 环空环境下 咪唑啉缓蚀剂的浓度对 P110 钢的 SCC 行为有重要影响。在拉应力载荷存在时,添加足量 的缓蚀剂对均匀腐蚀和 SCC 均具有较好的抑制效果,但当用量不足时,缓蚀剂的添加会增大 P110 钢的 SCC 敏感性,其 SCC 机制为氢脆与局部阳极溶解的混合机制。因此,P110 钢在模拟 CO₂ 注入井的环空环境中会发生 SCC ,其机制为 AD + HE 机制。结论 咪唑啉缓蚀剂的浓度对 P110 钢的 SCC 行为有重要影响,足量的缓蚀剂对均匀腐蚀和 SCC 均具有较好的抑制效果,但浓度不足时反而会增大 SCC 敏感性。关键词:P110 钢;应力腐蚀;环空环境;CO₂ 注入

中图分类号: TG174.42 文献标识码: A 文章编号: 1001-3660(2015)03-0025-06 **DOI**: 10.16490/j. cnki. issn. 1001-3660.2015.03.004

Effect of Imidazoline Corrosion Inhibitor on Stress Corrosion Cracking Behavior of P110 Steel in Simulated Annulus Environment in CO₂ Injection Wells

LIU Ran-ke¹, WANG Li-xian², LIU Zhi-yong¹, DU Cui-wei¹, LI Xiao-gang¹

(1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China;
2. Beijing SJ Environmental Protection and New Material Co. Ltd., Beijing 100080, China)

ABSTRACT: Objective To study the effect of imidazoline corrosion inhibitor on the stress corrosion cracking (SCC) behavior of

收稿日期: 2014-11-12; 修订日期: 2014-12-23

Received: 2014-11-12; **Revised**: 2014-12-23

基金项目:国家高技术研究发展计划(863 计划 2012AA040105);国家科技基础性工作专项(2012FY113000);国家自然科学基金(51471034)

Fund: Supported by the National High-tech R & D Program (863 Program, 2012AA040105), the Special Basic Work of National Science and Technology (2012FY113000) and the National Natural Science Foundation of China (51471034)

作者简介: 刘然克(1975—) ,男 辽宁人 博士 ,主要从事石油炼化材料腐蚀与防护方面的研究。

Biography: LIU Ran-ke(1975-), Male , from Liaoning , Ph. D. , Research focus: corrosion and protection of petroleum refining material.

通讯作者:刘智勇(1978—),男, 吉林人, 博士, 副教授, 主要从事应力腐蚀方面的研究。

Corresponding author: LIU Zhi-yong(1978-), Male, from Jilin, Ph. D., Associate professor, Research focus: SCC of materials.

P110 steel in simulated annulus environment in CO₂ injection wells, in order to provide reference and basis for the establishment of protection method against corrosion in the annulus environment of CO, injection wells. Methods P110 steel in simulated annulus environment in CO₂ injection wells was treated by SCC tests, electrochemical measurements and corrosion morphology analysis. According to the site-extracted component analysis results of annulus medium in the CO₂ injection well, simulated solution was prepared in laboratory, imidazoline corrosion inhibitor was selected, and the pH of the simulated solution was adjusted to 4. Highly pure N₂ was introduced to deoxidize , in order to prevent the oxidation of sulfide. Three-point bend specimen was used in the stress corrosion test, and the deflection of the sample was controlled at the set value to control the load. Both the stress corrosion test and electrochemical test were carried out in a closed autoclave. After the experiment, the corrosion morphology was observed by scanning electron microscope. Results In the annulus environment of the CO₂ injection well, concentration of imidazoline corrosion inhibitor had important effect on the SCC behavior of P110 steel. In the presence of tensile stress load, the addition of sufficient corrosion inhibitor had good inhibition effect on uniform corrosion and SCC, but when the dosage was insufficient, the addition of corrosion inhibitor would increase the SCC sensitivity of P110 steel , and the SCC mechanism was the mixed mechanism of local anodic dissolution and hydrogen embrittlement. Therefore SCC occured on P110 steel in simulated annulus environment in CO₂ injection wells, and its mechanism was AD + HE. Conclusion The concentration of imidazoline corrosion inhibitor posed a significant influence on the SCC behavior of P110 steel. Adequate imidazoline corrosion inhibitor could well inhibit both uniform corrosion and SCC, while the addition of inadequate imidazoline corrosion inhibitor increased the SCC susceptibility instead. KEY WORDS: P110 Steel; stress corrosion cracking; annulus environment; CO₂ injection

CO, 驱油方法是一种环保、高效的采油手段, 随 着稠油和低渗透油藏的不断开采,呈快速发展态 势^[1] 但在应用中可能导致严重的腐蚀问题。在 CO, 注入过程中,由于注入压力较大,CO,会向环空中渗 漏^[2]。这些 CO₂ 溶于水形成碳酸^[3],会大大降低介 质的 pH 值。同时,由于环空环境是一个密闭的绝氧 环境,并含有较高浓度的 SO42-,在适宜的温度下,硫 酸盐还原菌(SRB) 会产生足量 H₂S^[4]。在 16~30 ℃ 的温度范围内,CO。水解产生的低 pH 环境会促进 H₂S 在金属表面的析氢反应活性,增强金属氢脆 (HE)和氢致开裂(HIC)风险,导致SCC敏感性大幅 升高^[5]。这些情况会导致 CO₂ 注入井的环空环境腐 蚀性大大增强 ,含有较高浓度的 CO2, HCO3⁻, SO4²⁻, Cl^- 和少量 H₂S ,成为符合硫化物应力腐蚀开裂的敏 感环境^[6]。在这种环境中,油管中上部受力较大的管 段具有极高的 SCC 风险。但是目前 国内外的相关研 究大都集中于工业管道或容器内部环境所导致的应 力腐蚀问题^[7-10] ,针对较低温度(0~25 ℃)、高 CO, 浓度(分压)且含有一定量硫化物的 CO,注入井环空 环境下的油管钢应力腐蚀行为、机理及其防护方法的 研究还未见公开报道。

文中通过应力腐蚀试验和电化学试验,研究咪唑 啉类缓蚀剂对 P110 钢在模拟 CO₂ 注入井环空环境下 的应力腐蚀行为的影响规律,为 CO₂ 注入井环空环境 腐蚀防护方法的建立提供参考和依据。

1 试验

所用 P110 油管钢的化学成分(以质量分数计)如下: C 0. 25%, Si 0. 23%, Mn 2. 64%, S 0. 003%, P 0. 0095%, Cr 0. 033%, Mo 0. 018%, Ni 0. 029%, Nb 0. 01%, V 0. 068%, Ti 0. 003%, Cu 0. 059%, B 0. 0004%, Fe 余量。成分符合 API 5CT 标准^[11]要求。该钢的金相组织由马氏体及部分铁素体组成,组织均匀,如图1所示。

图 1 P110 油管钢的金相组织 Fig. 1 Microstructure of P110 pipeline steel

实验室模拟溶液根据现场提取的 CO_2 注入井环 空介质的成分分析结果配制,其母液成分为: NaCl 6.15 g/L Na₂S•9H₂O 13.50 g/L NaHCO₃ 2.71 g/L, Na₂SO₄ 0.33 g/L。所用缓蚀剂为某商用咪唑啉类缓 蚀剂,其建议添加量为 1000 mg/L。为了模拟环空内 部的偏酸性环境,用 0.5% (质量分数) 的 CH₃COOH 溶液调节模拟液 pH 值至 4。所有试剂均为化学纯 级 ,溶剂为去离子水。配制溶液前 ,去离子水中以 500 mL/(L•min) 通 1 h 高纯 N₂ 进行除氧 ,以防止硫化 物氧化。

应力腐蚀试样采用三点弯试样,通过将试样的挠 度控制为设定值来控制加载载荷。为了能在较短的 时间内(720 h) 观察到 P110 钢的 SCC 行为,试样表面 用丙酮除油后^[12],采用较高的弹性应力水平(加载应 力水平为 0.9 σ_s)加载。电化学试样为 10 mm × 10 mm × 3 mm 的试片,背面点焊引出铜导线,用环氧树 脂密封,仅使其工作表面暴露在介质中。所有试样表 面用 SiC 耐水砂纸逐级打磨至 1500[#],其中三点弯试 样的打磨方向与其所受拉应力方向一致,然后用丙酮 和去离子水清洗表面,吹干后待用。

应力腐蚀试验和电化学试验均在密闭高压釜内 进行。釜腔密闭后,先分三次通入1 MPa 高纯 N₂ 并 放空,再持续通入1 h 高纯 N₂ 以置换出高压釜中的 氧气,模拟环空溶液的低氧环境。然后,依次通入 CO₂ 和 N₂ 至所需的 CO₂ 分压(4 MPa) 和总压(10 MPa),开始应力腐蚀浸泡实验,实验时间为 720 h。 实验高压釜外由温度控制槽控制温度为(20 ±1) °C。 实验结束后,采用 Cambridge S-360 型扫描电镜对腐 蚀形貌进行观察。

电化学实验在上述相同的装置内进行,采用三电 极体系,Ag/AgCl 电极为参比电极(测试后的电位信 息转化为相对于饱和甘汞电极(SCE)电位信息),铂 片电极为辅助电极,P110 试样为工作电极。试样和 电极导线均进行了耐压密封绝缘处理。加压后静置 约 30 min 至开路电位稳定 在 PARSTAT-2273 电化学 工作站上进行交流阻抗谱(EIS)和极化曲线测试。 EIS 测试频率范围为 100 kHz ~ 10 mHz,激励电位为 10 mV;极化曲线测试中,电位扫描由阴极向阳极进 行,电位扫描范围为 - 500 mV ~ 800 mV(vs. OCP), 扫描速度为 0.5 mV/s。

2 结果及分析

2.1 应力腐蚀结果

图 2 为 P110 钢试样浸泡 720 h 后的宏观形貌。 可见在无缓蚀剂的溶液中,试样仍保持初始加载状态,而在添加 1000 mg/L 缓蚀剂的溶液中,有试样发 生了明显的弯折断裂,表明添加缓蚀剂可能提高 P110 钢的 SCC 敏感性,导致试样发生贯穿性的宏观 裂纹。

图 3 为三点弯试样在外加应力 0.9 σ_{s} 缓蚀剂浓 度不同的条件下浸泡 720 h,去除腐蚀产物后的表面 SEM 照片。可见不添加缓蚀剂时 如图 3a 所示,试样 表面发生了较严重的均匀腐蚀,并存在长度超过300 μm 的裂纹,说明此时 P110 钢既会发生较严重的均匀 腐蚀,又可能发生 SCC。添加 1000 mg/L 缓蚀剂时, 如图 3b 所示 试样表面的均匀腐蚀明显减轻 但发生 了严重点蚀和 SCC ,裂纹长度明显更长 ,产生了贯穿 性裂纹(图 2b)。这说明添加一定浓度的咪唑啉缓蚀 剂虽然可以抑制均匀腐蚀,但会明显促进点蚀和 SCC 的发生和扩展。添加 1500 mg/L 缓蚀剂时,如图 3c 所示,试样表面的均匀腐蚀进一步减轻,存在局部溃 疡状腐蚀区 腐蚀区内存在微裂纹。对比图 3b 和 3c 可知 咪唑啉缓蚀剂超过一定浓度后 能够既有效抑 制均匀腐蚀,又减缓 SCC 的发生。当缓蚀剂浓度达到 2000 mg/L 时 如图 3d 所示,试样表面的均匀腐蚀非 常轻微 仅发现轻微点蚀坑 未发现微裂纹的存在 这

图 3 试样受力最大部位的表面微观形貌

Fig. 3 The SEM observations of surface morphology of the specimen site with the maximum stress: a) no corrosion inhibitor; b) 1000 mg/L corrosion inhibitor; c) 1500 mg/L corrosion inhibitor; d) 2000 mg/L corrosion inhibitor 进一步说明咪唑啉缓蚀剂浓度足够时才能有效抑制 SCC 的发生。

对不同实验条件下的三点弯试样 SCC 情况进行 统计 结果见表1。添加的缓蚀剂从0至1500 mg/L, 所有试样均发生了不同程度的 SCC,且具有相同规 律,即:在无缓蚀剂时,试样均发生了明显的 SCC(肉 眼可见),但未发生宏观断裂;在添加1000 mg/L 缓蚀 剂的溶液中 SCC 程度最严重 3 个平行试样中有2 个 发生宏观断裂,1 个存在宏观裂纹;随缓蚀剂浓度进 一步增加 SCC 和均匀腐蚀情况明显减轻,在缓蚀剂 浓度达 2000 mg/L 时 SCC 得到明显抑制。

表1 P110 钢三点弯试样在不同缓蚀剂浓度下的 SCC 情况 Tab.1 SCC of the three-point bend specimens under dif-

ferent corrosion inhibitor concentration

缓蚀剂浓度	SCC 特征	
/(mg • L ⁻¹)	裂纹形貌	断裂情况
0	肉眼可见小裂纹	3 试样未断裂
1000	宏观裂纹	2 试样断裂 』 试样未断裂
1500	微裂纹	3 试样未断裂
2000	无裂纹	3 试样未断裂

2.2 电化学测试结果

为了进一步分析缓蚀剂对 P110 钢 SCC 的影响机 制 测试了 P110 钢在不同缓蚀剂浓度下的极化曲线 和电化学阻抗谱。图 4 为 P110 钢在不同缓蚀剂浓度 的模拟溶液中测得的极化曲线。可见在无缓蚀剂的 情况下 P110 钢具有最高的腐蚀电流密度(J_{corr}) 和最 低的自然腐蚀电位(E_{corr})。当缓蚀剂浓度超过 400 mg/L 以上时 J_{corr} 大幅降低 E_{corr} 明显升高。随着缓蚀 剂浓度的增加 J_{corr} 和 E_{corr} 进一步降低。这说明所用

咪唑啉缓蚀剂对 P110 钢的阳极过程和阴极过程均有 较明显的抑制,且随着缓蚀剂浓度的增加,其对阴极 过程的缓蚀作用进一步加强。

图 5 为 P110 钢在不同缓蚀剂浓度的溶液中测得 的 EIS 曲线 其拟合电路如图 6 所示。其中 R_s 表示 溶液电阻 Q_i 为反映腐蚀产物层电容的常相位角元 件 $R_{\rm f}$ 为反映电极表面腐蚀产物对电极过程阻碍作用 的腐蚀产物电阻 ,Q_u为反映双电层电容的常相位角 元件 R. 表示电荷转移电阻 L. 为反映硫化物吸附和 H 析出过程的阻抗原件。在无缓蚀剂的溶液中,P110 钢的 Nyquist 图表现为高频容抗弧和低频感抗弧: 高 频容抗弧反映了 P110 钢在试验介质中的双电层反应 过程;低频容抗弧反映了硫化物在电极表面的吸附过 程和 H 的析出过程。在添加缓蚀剂的溶液中,所有 Nyquist 曲线表现为一个容抗弧,且随着缓蚀剂浓度 的增大 容抗弧增大。这表明缓蚀剂的添加使得双电 层传质过程受到明显的抑制 并抑制了硫化物吸附和 H 的析出过程,导致腐蚀性介质通过缓蚀剂膜的阻力 相应增大。

Fig. 5 Nyquist diagrams of P110 steel under different concentration of corrosion inhibitor

图 6 P110 钢在不同缓蚀剂浓度条件下的 Nyquist 图等效电路

- Fig. 6 Equivalent circuit of P110 steel under different concentration of corrosion inhibitor: a) no inhibitor; b) 1000 mg/L inhibitor
- 3 讨论

对于 CO₂-H₂S 水溶液的电化学腐蚀机理,一般认

为是氢离子的还原以及铁的硫化物和碳酸盐的产生, 其中的主要腐蚀机理概括如下^[13-18]。

阳极过程:

 $Fe + 2H_2CO_3 \leftrightarrow Fe^{2+} + 2HCO_3^- + 2H_{ads}$ (1)

$$\operatorname{Fe}^{2^{+}} + \operatorname{HCO}_{3}^{-} + e \leftrightarrow \operatorname{FeCO}_{3} + \operatorname{H}_{\operatorname{ads}}$$
 (2)

 $Fe + H_2 S \leftrightarrow Fe(HS)^+ + H_{ads} + e$ (3)

 $x \text{Fe} + \text{HS}^{-} \leftrightarrow \text{Fe}_x \text{S} + \text{H}_{ads} + \text{e}$ (4)

阴极过程:

 $H_2CO_3 + e \leftrightarrow HCO_3^- + H_{ads}$ (5)

 $HCO_{2}^{-} + e \leftrightarrow CO_{2}^{2-} + H_{ab}$ (6)

$$H_2S + e \leftrightarrow HS^- + H_{ads}$$
 (7)

$$HS^{-} + e \leftrightarrow S^{2-} + H_{ads}$$
 (8)

$$H_{ads} \leftrightarrow H_{abs} , H_{ads} + H_{ads} \rightarrow H_2 \uparrow$$
 (9)

上述反应机理有相似之处。 CO_2 , H_2S 及其电离 产物均能与 Fe 在试验介质中发生反应,生成吸附在 金属表面的氢原子(H_{ads} ,公式 5—8);同时,生成的 Fe²⁺经沉淀反应(公式 2 和 4)或进一步被微量氧氧 化,生成具有一定保护作用的腐蚀产物膜。腐蚀产物 膜主要由 FeCO₃,Fe₃O₄,Fe 及金属氧化物等不同的物 质组成,其稳定性、渗透性等对钢的腐蚀特性有很大 影响^[19-20]。更重要的是,电极表面存在大量的 H_{ads} , 通过自由扩散或在硫化铁膜(Fe_xS)的促进作用下, $H_{ads}会进入金属内部,导致氢致开裂(HIC)和 SCC 等$ 的发生^[18]。因此,在不添加缓蚀剂的条件下,模拟溶 $液中的 CO₂(<math>H_2CO_3$), H_2S 和 Cl⁻等的共同作用导致 P110 钢发生了较严重的均匀腐蚀和 SCC(图 3),其 SCC 机制具有一定氢脆(HE)特征。

当模拟溶液中添加咪唑啉类缓蚀剂后 缓蚀剂能 在 P110 钢表面形成结合力很强的吸附层 ,与腐蚀产 物膜相互嵌入 使产物膜更为致密; 同时 腐蚀产物膜 层中的铁离子也可以与缓蚀剂中的杂化原子形成配 位键^[21] 使腐蚀产物膜中的分子结合力增强; 这两种 作用能有效抑制阳极和阴极反应(图4)。缓蚀剂浓 度较低时 其保护作用不能有效覆盖整个试样表面, 特别是在 Cl⁻等侵蚀性离子的作用下,试样表面存在 一定密度的活性点,这些区域虽然对整个 I 的贡献 较小(图4) 但是在活性点位置会存在较高的局部腐 蚀电流 I^L_{cor},从而导致在一定缓蚀剂浓度下 SCC 萌生 与扩展较无缓蚀剂时明显增强(图3),局部阳极溶解 (AD) 机制对 SCC 行为的影响增强。随着缓蚀剂浓 度进一步增大,虽然 I corr 的变化较小(图 4),但活性点 的密度相应降低,活性点处的阳极反应得到抑制(图 3b-d 对比) 导致极化电阻明显增大(图 5)。此时, SCC 萌生受到抑制,因而当缓蚀剂添加量达到 2000 mg/L 时,其敏感性大幅降低,在试验时间内,试样未 出现明显的 SCC 裂纹。因此,在 CO₂ 注入井环空环 境下,咪唑啉缓蚀剂的浓度对 P110 钢的 SCC 行为有 重要影响,在拉应力载荷存在时,添加足量的缓蚀剂 对均匀腐蚀和 SCC 均具有较好的抑制效果,但当用量 不足时,缓蚀剂的添加会增大 P110 钢的 SCC 敏感性, 其 SCC 机制为氢脆与局部阳极溶解的混合机制。

4 结论

 P110 钢在模拟 CO₂ 注入井的环空环境中会 发生 SCC 其机制为 AD + HE 机制。

2) 咪唑啉缓蚀剂的浓度对 P110 钢的 SCC 行为 有重要影响。足量的缓蚀剂对均匀腐蚀和 SCC 均具 有较好的抑制效果,但浓度不足时,缓蚀剂的添加反 而会增大 SCC 敏感性。

参考文献

- [1] WANG T L SONG Y C ZHANG Y C et al. Measurement of Immiscible CO₂ Flooding Processes and Permeability Reduction due to Asphaltene Precipitation by X-ray CT Imaging [J]. Energy Procedia 2013 37:6920—6927.
- [2] YEVTUSHENKO O BETTGE D BOHRAUS S et al. Corrosion Behavior of Steels for CO₂ Injection [J]. Process Safety and Environmental Protection 2013 92(1):108–118.
- [3] ZHANG G A ZENG Y GUO X P et al. Electrochemical Corrosion Behavior of Carbon Steel under Dynamic High Pressure H₂S/CO₂ Environment [J]. Corrosion Science ,2012 ,65: 37-47.
- [4] GUAN J ,XIA L P ,WANG L Y ,et al. Diversity and Distribution of Sulfate-reducing Bacteria in Four Petroleum Reservoirs Detected by Using 16S rRNA and dsrAB Genes [J]. International Biodeterioration & Biode ,Gration ,2013 ,76: 58—66.
- [5] JOSEPH A P ,KELLER J ,BUSTAMANTE H ,et al. Surface Neutralization and H₂S Oxidation at Early Stages of Sewer Corrosion: Influence of Temperature ,Relative Humidity and H₂S Concentration [J]. Water Research ,2012 ,46: 4235— 4245.
- [6] ZIAEI S M R ,KOKABI A H ,NASR-ESFEHANI M. Sulfide Stress Corrosion Cracking and Hydrogen Induced Cracking of A216–WCC Wellhead Flow Control Valve Body [J]. Case Studies in Engineering Failure Analysis 2013 ,1 (3): 223—

234.

- [7] ZENG D Z ,CHEN R ,ZHANG Z ,et al. Research on Stress Corrosion Sensitivity of C110 Casing in Wellbore Protection Fluid [J]. Energy Procedia 2012 ,16: 816—821.
- [8] ABAYARATHNA D ,NARAGHI A ,WANG S H. The Effect of Surface Films on Corrosion of Carbon Steel in a CO₂-H₂S-H₂O System [C]//Corrosion 2005. Houston: NACE , 2005: 05624.
- [9] LI W F ,ZHOU Y J ,XUE Y. Corrosion Behavior of 110S Tube Steel in Environments of High H₂S and CO₂ Content [J]. Journal of Iron and Steel Research ,International , 2012 ,12(19):59-65.
- [10] YIN Z F ZHAO W Z ,BAI Z Q et al. Corrosion Behavior of SM 80SS Tube Steel in Stimulant Solution Containing H₂S and CO₂ [J]. Electrochimica Acta ,2008 ,53 (10) : 3690— 3700.
- [11] APISPEC 5CT. Specification for Casing and Tubing [S].
- [12] GB/T 15970.6—1998. Corrosion of Metals and Alloys—Stress Corrosion Testing—Part 6: Preparation and Use of Precracked Specimens for Tests Under Constant Load or Constant Displacement [S].
- [13] WU Y M. Applying Process Modeling to Screen Refining Equipment for Wet Hydrogen Sulfide Service [J]. Corrosion, 1998 54(2):169-173.
- [14] HEUER J K ,STUBBINS J F. An XPS Characterization of FeCO₃ Films from CO₂ Corrosion [J]. Corrosion Science , 1999(41):1231—1243.

- [15] MA H Y ,CHENG X L ,LI G Q ,et al. The Influence of Hydrogen Sulfide on Corrosion of Iron under Different Conditions [J]. Corrosion 2000(42): 1669—1683.
- [16] KITTEL J ROPITAL F GROSJEAN F et al. Corrosion Mechanisms in Aqueous Solutions Containing Dissolved H₂S. Part 1: Characterization of H₂S Reduction on a 316L Rotating Disc Electrode [J]. Corrosion Science 2013 66: 324—329.
- [17] FRAGIEL A SEMA S PEREZ R. Electrochemical Study of Two Micro-alloyed Pipeline Steels in H₂S Environments
 [J]. International Journal of Hydrogen Energy ,2005 ,30: 1303.
- [18] LIU Z Y ,DONG C F ,LI X G. Stress Corrosion Cracking of 2205 Duplex Stainless Steel in H₂S-CO₂ Environment [J]. J Mater Sci 2009 44: 4228—4234.
- [19] DING J H ZHANG L ,LU M X ,et al. The Electrochemical Behavior of 316L Austenitic Stainless Steel in Cl⁻ Containing Environment under Different H₂S Partial Pressures [J]. Applied Surface Science 2014 289:33-41.
- [20] BANAS J ,LELEK-BORKOWSKA U ,MAZURKIEWICZ B , et al. Effect of CO_2 and H_2S on the Composition and Stability of Passive Film on Iron Alloys in Geothermal Water [J]. Electrochimica Acta 2007 52(18): 5704—5714.
- [21] JEVREMOVIC I SINGER M NESIC S et al. Inhibition Properties of Self-assembled Corrosion Inhibitor Talloil Diethylenetriamine Imidazoline for Mild Steel Corrosion in Chloride Solution Saturated with Carbon Dioxide [J]. Corrosion Science 2013 ,77: 265—272.

(上接第24页)

- [68] CHEN S J ,CHEN Y ,LEI Y H ,et al. Novel Strategy in Enhancing Stability and Corrosion Resistance for Hydrophobic Functional Films on Copper Surfaces [J]. Electrochemistry Communications 2009 ,11: 1675—1679.
- [69] MA J ,ZHANG X Y ,WANG D P ,et al. Superhydrophobic Metallic Glass Surface with Superior Mechanical Stability and Corrosion Resistance [J]. Applied Physics Letters , 2014 ,104(173701):1-5.
- [70] ZHENG S X LI J H. Inorganic-Organic Sol Gel Hybrid Coatings for Corrosion Protection of Metals [J]. Journal of Sol-Gel Science and Technology 2010 54: 174-187.
- [71] LI Y ,LI L ,SUN J. Bioinspired Self-healing Superhydropho-

bic Coatings [J]. Angewandte Chemie ,2010 ,122: 6265-6269.

- [72] LIU Q ,WANG X ,YU B ,et al. Self-healing Surface Hydrophobicity by Consecutive Release of Hydrophobic Molecules from Mesoporous Silica [J]. Langmuir ,2012 ,28: 5845— 5849.
- [73] XUE C H ,MA J Z. Long-lived Superhydrophobic Surfaces [J]. Journal of Materials Chemistry A ,2013 ,1: 4146-4161.
- [74] CHEN C M ,YANG S. Directed Water Shedding on High-aspect-ratio Shape Memory Polymer Micropillar Arrays [J]. Advanced Materials 2014 26(8):1283—1288.