国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Scientific Data Center
中文 | Eng 数据审核 登录 反馈
【材料课堂】一文看懂金属切削刀具涂层技术
2018-12-26 12:34:24 作者:本网整理 来源:金属加工

    01刀具涂层

 

    通过气相沉积或其他方法,在硬质合金(或高速工具钢刀具)基体上涂覆一薄层(一般只有几微米)耐磨性高的难熔金属(或非金属)化合物,是提高刀具材料耐磨性而不降低其韧度的有效途径之一。也是解决刀具材料发展中的一对矛盾(材料硬度和耐磨性越高,强度及韧度就越低)的很好方法。


    02涂层方法及特点

 

    目前,常用的刀具涂层方法有化学气相沉积法(CVD)和物理气相沉积法(PVD)两种。近年来出现一些新的涂层工艺,具有良好的应用前景。


    CVD法

 

    CVD法属于原子沉积类,是利用金属卤化物的蒸气、氢气和其他化学成分,在950~1050℃的高温下,进行分解、热合等气、固反应沉积物以原子、离子、分子等原子尺度的形态在加热基体表面形成固态沉积层的一种方法,其过程包括三个阶段:物料汽化、运输到基体附近和在基体上形成覆盖层。


    在各种CVD法中,用得最多的是真空离子轰击法和磁控离子反应喷涂法。


    CVD技术主要用于硬质合金车削类刀具的表面涂层,其涂层刀具适合于中型、重型切削的高速粗加工及半精加工。


    CVD法与其他涂层方法比较,不仅设备简单,工艺成熟,还有以下优点:


    沉积物种类多,能涂金属、合金、碳化物、氮化物、硼化物、氧化物、碳氮化物、氧氮化物氢碳氮化物等。


    有高度的渗透性和均匀性,可获得不同组织的多层涂层,涂层厚薄均匀。


    沉积速率高,而且容易控制。


    涂层纯度高,晶粒细而致密。


    黏附力较强,可获得较厚的涂层。


    工艺成本低,适合大量生产。


    在700~900℃下的中温化学气相沉积(MTCVD)可获得致密纤维状结晶形态的TCN涂层,涂层厚度可达8~10μm,并可通过CVD工艺技术在表层沉积上A2O3、TiN等抗高温氧化性能好、与被加工材料亲和力小、自润滑性能好的材料。


    MT-CVD涂层刀片适合于高速、高温、大负荷、干式切削条件下使用,其寿命可比普通涂层刀片提高1倍左右。CVD法的主要缺点在于沉积温度较高,在对高速工具钢刀具进行涂层时,会使刀具退火及变形。所以沉积后的刀具还要进行淬火处理。


    PVD法

 

    PVD法是利用蒸发或溅射等物理形式把材料从靶源移走,然后通过真空或半真空空间使这些携带能量的蒸气离子沉积到基片或零件表面以形成膜层,通过气相反应过程,使蒸发或溅射出的金属原子发生气相反应,从而在刀具表面沉积出所要求的化合物。PVD涂层能涂氮化钛、碳氮化钛、铝钛氮化合物,以及各种难熔金属的碳化物和氮化物。


    目前,常用的PvD方法有低压电子束蒸发(LVEE)法、阴极电子弧沉积法(CAD)、晶体管高压电子束蒸发法( THVEE)、非平衡磁控溅射法(UMS)、离子束协助沉积法(IAD)和动力学离子束混合法(DIM)。其主要差别在于,沉积材料的汽化方法以及产生等离子体的方法不同,而使得成膜速度和膜层质量存在差异。


    PVD技术主要应用于整体硬质合金刀具和高速工具钢刀具的表面处理,已普遍应用于硬质合金钻头、铣刀、铰刀、丝锥、异形刀具、焊接刀具等的涂层处理。


    和CVD法比较,PVD法有以下优点:


    涂层温度(300~500℃C)低于高速工具钢回火温度,故不会损害高速工具钢刀具的硬度和尺寸精度,涂层后不再需要热处理。


    涂层有效厚度只有几微米,故可保证刀具原有的精度,适于涂覆高精度刀具。


    涂层的纯度高,致密性好,涂层和基体的结合牢固,涂层性能不受基体材质影响。


    涂层均匀,切削刃和圆弧处无增厚或倒圆现象,故复杂刀具也能获得均匀涂层。


    不会产生脱碳相,也无CVD法因氯的浸蚀和氢脆变形所引起的涂层易脆裂的情况,涂层刀片强度较高。


    工作过程干净,无污染,无公害。


    目前,PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由单一涂层发展到了TiC、TiCN、ZrN、CrN、MoS2、 TIAIN、 TiAICN、TiN-AIN、CN等多种多元复合涂层,且由于纳米级涂层的出现,使得PVD涂层刀具质量又有了新的突破,这种薄膜涂层不仅结合强度高、硬度接近CBN、抗氧化性能好,并可有效地控制精密刀具刃口形状及精度,在进行高精度加工时,其加工精度毫不逊色于未涂层刀具。


    其他涂层方法:等离子体化学气相沉积法(PVCD)、离子束辅助沉积技术(IBAD)、激光强化处理等,不一而足。


    涂层特点

 

    采用涂层技术可在不降低刀具强度的条件下,大幅度地提高刀具表面硬度,目前所能达到的硬度已接近100GPa;随着涂层技术的飞速发展,薄膜的化学稳定性及高温抗氧化性更加突出,从而使高速切削加工成为可能;润滑薄膜具有良好的固相润滑性能,可有效地改善加工质量,也适合于干式切削加工;涂层技术作为刀具制造的最终工序,对刀具精度几乎没有影响,并可进行重复涂层工艺。


    03涂层技术及刀具涂层知识

 

    氮碳化钛(TiCN)

 

    涂层比氮化钛(TiN)涂层具有更高的硬度。由于增加了含碳量,使TiCN涂层的硬度提高了33%,其硬度变化范围约为Hv3000——4000(取决于制造商)。


    CVD金刚石涂层

 

    表面硬度高达Hv9000的CVD金刚石涂层在刀具上的应用已较为成熟,与PVD涂层刀具相比,CVD金刚石涂层刀具的寿命提高了10—20倍。金刚石涂层刀具的高硬度,使得切削速度可比未涂层的刀具提高2—3倍,使CVD金刚氧化温度是指涂层开始分解时的温度值。氧化温度值越高,对在高温条件下的切削加工越有利。


    虽然TiAlN涂层的常温硬度也许低于TiCN涂层,但事实证明它在高温加工中要比TiCN有效得多。TiAlN涂层在高温下仍能保持其硬度的原因在于可在刀具与切屑之间形成数控微信号cncdar一层氧化铝,氧化铝层可将热量从刀具传入工件或切屑。


    与高速钢刀具相比,硬质合金刀具的切削速度通常更高,这就使TiAlN成为硬质合金刀具的首选涂层,硬质合金钻头和立铣刀通常采用这种PVDTiAlN涂层石涂层刀具成为有色金属和非金属材料切削加工的不错选择。


    刀具表面的硬质薄膜对材料有如下要求

 

    ①硬度高、耐磨性能好;②化学性能稳定,不与工件材料发生化学反应;③耐热耐氧化,摩擦系数低,与基体附着牢固等。单一涂层材料很难全部达到上述技术要求。


    涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了 TiC—A12O3一TiN复合涂层和TiCN、TiAlN等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。


    涂层材料选择标准

 

    在涂层刀具制造过程中,一般根据涂层的硬度,耐磨性,高温抗氧化性,润滑性以及抗粘结性等几个方面来选择,其中涂层氧化性是与切削温度最直接相关的技术条件。


    氧化温度是指涂层开始分解时的温度值,氧化温度值越高,对在高温条件下的切削加工越有利。虽然TiAlN涂层的常温硬度也许低于TiCN涂层,但事实证明它在高温加工中要比TiCN有效得多。


    TiAlN涂层在高温下仍能保持其硬度的原因在于可在刀具与切屑之间形成一层氧化铝,氧化铝层可将热量从刀具传入工件或切屑。与高速钢刀具相比,硬质合金刀具的切削速度通常更高,这就使TiAlN成为硬质合金刀具的首选涂层,硬质合金钻头和立铣刀通常采用这种PVDTiAlN涂层。


    从应用技术角度讲:除了切削温度外,切削深度、切削速度和冷却液都可能对刀具涂层的应用效果产生影响。


    04常用涂层材料进展及超硬涂层技术

 

    硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。目前,工业发达国家TiN涂层高速钢刀具的使用率已占高速钢刀具的50%一70%,有的不可重磨的复杂刀具的使用率已超过90%。


    由于现代金属切削对刀具有很高的技术要求,TiN涂层日益不能适应。TiN涂层的耐氧化性较差,使用温度达500℃时,膜层 明显氧化而被烧蚀,而且它的硬度也满足不了需要。TiC有较高的显微硬度,因而该材料的耐磨性能较好。同时它与基体的附着牢固,在制备多层耐磨涂层时,常将TiC作为与基体接触的底层膜,在涂层刀具中它是十分常用的涂层材料。


    TiCN和TiAlN的开发,又使涂层刀具的性能上了一个台阶。 TiCN可降低涂层的内应力,提高涂层的韧性,增加涂层的厚度,阻止裂纹的扩散,减少刀具 崩刃。将TiCN设置为涂层刀具的主耐磨层,可显着提高刀具的寿命。


    TiAlN化学稳定性好,抗氧化磨损,加工高合金钢、不锈钢、钦合金、镍合金时,比 TiN涂层刀具提高寿命3—4倍。在TiAlN涂层中如果有较高的Al浓度,在切削时涂层表面会生成一层很薄的非品态A12O3,形成一层硬 质惰性保护膜,该涂层刀具可更有效地用于高速切削加工。掺氧的氮碳化钛TiCNO具有很高的显微硬度和化学稳定性,可以产生相当于TiC十A12O3复合 涂层的作用。金属加工微信,内容不错,值得关注。


    在上述硬质薄膜材料中,显微硬度HV能够超过50GPa的有3种:金刚石薄膜、立方氮化硼CBN、氮化碳。


    许多沉积金刚石薄膜的温度要求为600℃一900℃,因此该技术常用于硬质合金刀具表面沉积金刚石薄膜。金刚石硬质合金刀具的商品化,是近几年涂层技术的重大成就。


    CBN在硬度和导热率方面仅次于金刚石,热稳定性极好,在大气中加热至1000℃也不发生氧化。 CBN对于铁族金属具有极为稳定的化学性能,与金刚石不宜加工钢材不同,它可以广泛用于钢铁制品的精加工、研磨等。


    CBN涂层除具有优良的耐磨损性能外,还可以在相当高的切削速度下加工耐热钢、钛合金、淬火钢,能切削高硬度的冷硬轧辊、掺碳淬火材料和对刀具磨损非常严重的Si—Al合金等。低压气相合成CBN薄膜的方法主要有CVD和PVD法。 CVD包括化学输运PCVD,热丝辅助加热PCVD、ECR—CVD等;PVD则有反应离子束镀、活性反应蒸镀、激光蒸镀离子束辅助沉积法等。CBN的合成技术,在基础研究和应用技术方面都还有不少工作要做,包括反应机制和成膜过程、等离子体诊断和质谱分析、最佳工艺条件的确定、高效率设备的开发等。


    氮化碳有可能具有达到或超过金刚石的硬度。合成氮化碳的成功,是分子工程学十分杰出的范例。作为超硬材料的氮化碳,预期还有其它许多宝贵的物理化学性质,研究氯化碳成为世界材料科学领域的热门课题。

 

 

 

更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注国家材料腐蚀与防护科学数据中心http://www.ecorr.org

 

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心