提起文物保护,不少人都认为这是社会科学领域专家的特长。
但是,在西北工业大学纳米能源材料研究中心,却有一群热心于壁画保护的材料科学家,他们专攻“材料科学与考古研究”这一新的研究方向,研究新材料与新技术在文物保护中的作用。
▲团队学生在模拟壁画上尝试新材料。
▲李炫华老师(中)带领学生观察新材料。
那么,当材料应用于壁画保护,究竟能解决什么问题?近日,《先进功能材料》刊发了该中心的论文,详细阐述了石墨烯增强纳米材料对壁画保护方面的研究进展。
当壁画保护遭遇材料危机古代馆藏壁画是人类社会发展的宝贵财富,壁画主要包括建筑壁画、石窟壁画和墓葬壁画。
墓葬壁画的时间和范围分布都很广泛,从4200年前的石峁遗址壁画到唐、宋、元、明、清历代均有发现墓葬壁画,尤其唐朝,无论数量和质量上都受到人们的极大关注。
但是人类不得不面临的一个现实问题是,目前有大量墓葬壁画出现很多病害,亟须修复。
西北工业大学教授李炫华告诉《中国科学报》记者:“壁画的结构由外而内主要包括颜料层、白灰层、草泥层、砖墙层,白灰层的主要组成成分是碳酸钙。随着时间流逝,白灰层容易失效,从而导致壁画表层受损,因此需要有效保护。”
目前壁画保护材料主要分为有机和无机材料两大类,但是有机保护材料与壁画本体兼容性差,长时间使用容易老化、变脆变黄,导致机械性下降。
同时,由于形成的膜不透气,壁画最终会膨胀、粉化,从而对壁画造成不可修复的致命伤害。
而类似于氢氧化钙的无机保护材料,具有兼容性好、耐老化的优点。“在施加到壁画表面后,氢氧化钙会与空气中的二氧化碳反应,生成碳酸钙并与白灰层融为一体,从而提高白灰层的强度,起到保护作用。”李炫华说。
2000年,意大利学者提出利用纳米氢氧化钙保护壁画。由于纳米尺寸效应,氢氧化钙的化学、物理特性会发生改变,表面活性及稳定性大幅增加,保护效果会获得显着提升。
因此,无机纳米材料成为了新的壁画保护材料研究方向。
这个想法实践起来却是困难重重。
李炫华告诉记者,中外学者用了近20年的努力,尝试了水溶液法、醇溶液法、微乳液法和钙金属法等方法来合成纳米氢氧化钙,但是截至目前合成的氢氧化钙仍存在着尺寸大、渗透性差、稳定性差、难以纯化、操作复杂、成本高等缺点。
“氢氧化钙的碳化慢、加固强度低等问题仍未得到有效解决,根本原因是还没有厘清氢氧化钙成核生长动力学规律,进而难以实现纳米氢氧化钙可控制备等关键技术的有效突破。”李炫华说。
发现石墨烯量子点新用途围绕这个困扰了科学家近20年的问题,课题组提出了一个新思路——引入石墨烯量子点。
他们利用石墨烯量子点表面活性剂的限域效应,有效调控了氢氧化钙的成核生长动力学速率,让氢氧化钙纳米材料“可控合成”。
李炫华表示,纳米材料的合成方法主要有气相法、固相法(如磨矿)和液相法。
相比于其他两种方法,液相法具有明显优势。“这个方法操作方便,合成工艺简单、成本低,特别是水溶液具有绿色环保的特点。
更重要的是,壁画保护材料通常需要分散到溶液中,利用喷涂、刷涂、注射的方式施加到壁画表面,这也有利于大规模壁画保护的实际应用,极大提高使用效率。”
因此,科研人员用水溶液方法巧妙地合成了“氢氧化钙/石墨烯量子点”杂化纳米材料。
研究结果显示,该材料颗粒约为80纳米,尺寸均匀,并且对壁画颜料具有强的黏附性,具备抗紫外线能力。
更重要的是,由于石墨烯量子点的增强作用,氢氧化钙纳米材料完全碳化成一种稳定的“方解石”相,对于壁画加固十分重要。
更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注国家材料腐蚀与防护科学数据中心http://www.ecorr.org