国家材料腐蚀与防护科学数据中心
National Materials Corrosion and Protection Scientific Data Center
中文 | Eng 数据审核 登录 反馈
隐身飞机雷达吸波材料背后的“魔法”
2017-03-27 11:45:00 作者:本网整理 来源:国际航空微信公号

  一般来说,隐身外形对于减小雷达截面积(RCS)的贡献占90%,而雷达吸波材料(RAM)只占10%。如果说,使用RAM可以将飞行器的RCS减小一个数量级,那么利用隐身外形则可以将RCS降低3~4个数量级。但是,在某些目标信号特征范围内,RAM发挥的作用远超上述水平。值得注意的是,外形隐身技术进展缓慢,似乎已经逼近天花板,而隐身材料技术的研究却飞速发展。


  材料对隐身的作用


  一种物质吸收电磁波的能力取决于两个参数,即介电常数和磁导率。两者分别描述的是一种物质储存电势能和磁能的能力。存在电势能/磁能的本质是因为材料中存在原子级、分子级或晶格级的电偶极子/磁偶极子。


  当电磁波作用到材料上时,这些偶极子指向与磁场相反的方向。在某些材料中,当电磁波消失时,这些偶极子很容易恢复为中性。在另外一些材料中,这些偶极子具有“黏性”,既需要更多的电磁波能量才能使其指向与磁场相反的方向,也需要对之施加额外的能量才能使其恢复到中性。因这部分额外的能量最终在材料中损耗掉了,所以称这种材料的介电常数或磁导率具有吸收分量。


1


  RAM是由基体材料和填充物组成的复合材料。基体通常选择的是介电常数损耗分量较低的材料,这类材料相对介电常数通常较小而磁导率可忽略不计。电磁波穿过基体材料时损耗很小,这正是选择基体材料时需要考虑的物理特性。典型的基体材料一般是不导电的聚合物,包括塑料、玻璃、树脂、聚氨酯和橡胶等。陶瓷具有较高的磁导率和较强的耐热性,而泡沫和蜂窝结构由于包含有大量空气,介电常数(即电能储存能力)特别低。


  有人可能设想用一些能透过电磁波的材料来制造飞机蒙皮,但是蒙皮里的物体, 如传感器、燃油、金属机体、发动机零件甚至飞行员也会反射雷达波。事实上,隐身蒙皮的底层是高导电率的材料(金属),这种材料能够强烈反射电磁波,从而避免电磁波透过蒙皮并在其他物体上产生复杂的回波。


2


  RAM填料通常是由“损耗材料”(即介电常数损耗分量较高)制成的颗粒,或者是覆有“损耗材料”涂层的颗粒。碳是一种良好的“损耗材料”,因为电损耗与电导率成正比,而碳的电导率处于金属和绝缘体之间。磁吸收层需要应用介电常数一般但磁导率(表征磁能储存能力)很大的材料,一般是羰基铁(纯粉末状的金属)或是氧化铁(也称为铁氧体)。这些材料可以混入橡胶或是分散到涂层材料中,而铁氧体通常烧结到某种贴片材料中。


  材料的介电常数、磁导率和损耗分量越大,材料能够吸收的电磁能就越多。但是,当电磁波传播到两种介质的边界处时,能量会被反射而不是进入另外一种介质。反射能量的多少取决于两种介质的阻抗,即每种材料磁导率和介电常数比值的平方根。在穿越边界时阻抗改变越大,反射的能量越多,被吸收的能量越少。因此,RAM设计必须综合考虑吸收率与表面反射率,以最大限度地吸收电磁波。


  材料的电磁特性也会随频率而变。在频率较高的雷达频段,任何磁性材料的阻抗都不可能接近空气(因为电磁波达到飞机表面时,飞机表面就是边界,两边的介质分别是蒙皮材料和空气),因此不可避免地会产生较强的表面反射。但是,如果表面吸波材料厚度为1/4波长,金属底层反射的电磁波就会与表面反射产生相干抵消效应。由于磁性RAM的磁导率较高,所需材料厚度较小。采用谐振频率为1~18GHz、厚度为0.1~0.5cm的商用“谐振吸收体”即可达到20dB(99%)的吸收性能。该项技术固有的作用范围不大,属于窄带,在谐振频率点以外15%的范围内都有显著的吸波效果。


  考虑到带宽有限、重量大和成本高,介电吸收体是高频段的首选宽带吸收材料。由于电介质没有磁性特征,其阻抗与空气相差太大,但通过应用分层材料——每层材料中碳粒越来越集中,就可以实现在介电常数、电导性和介电损耗都逐步增大的同时阻抗逐渐减弱。通过调整分层材料的设计,还可以使对消最大。这种阻抗渐变的介电吸收体能使反射减少20dB,且其带宽很容易覆盖高频区。不过,分层材料的厚度需要达到一定值才能在低频段实现吸收——X波段(8~12GHz)需要2.5cm,500MHz需要11.4cm。


  另一种方法是应用物理梯度。这些“几何过渡”的吸收体采用的是垂直于波的均匀材料尖体,其中最常见的一种是吸波暗室(用于RCS测试)里的锥形吸收体。在高频段下,波在这些结构中来回反射,但每次反射都会有能量损失。如果波长相对于结构足够大,波表现出来的效果好像是穿过一种性能渐变的材料。这类吸收体能将反射减少60dB,但要想在30MHz起作用,结构厚度需要4.57m。


  与常识相反的是,在低频段时,部分磁性材料更有效,因为它们的能量储存能力即磁导率增大了。在30M~1000MHz范围内,某些铁氧体表现出极高的电磁波压缩效应,阻抗接近空气。厚度为0.64cm、面积密度为34.18kg/m2的商用铁氧体磁瓦,能将甚高频(VHF)波段的反射减少20dB以上,将超高频(UHF)波段的发射减弱10dB。


  到目前为止,我们讨论的都是如何减少镜面反射,实际上,RAM在减少表面波辐射方面也是非常有效的。这些电磁波是雷达照射目标时因导电表面产生的电流而发射出来的。当这些表面波沿表面移动时,会发射出行波,通常其发射角与入射余角相近;当表面波遭遇不连续性表面,比如达到机体边缘时,或者遇到表面缝隙、结构台阶或是材料变化时,会激励出边缘波。边缘波的能量更集中,接近镜面反射。表面电流并非沿着材料的厚度方向而是沿着长度方向穿过,RAM的作用相当于波导,捕获电流并加以吸收。厚度仅为0.076cm的磁性RAM就能很好地抑制表面电流。


  当然,上述多种技术可以进行组合应用。0.76cm厚的分层磁性材料能在2~20GHz范围内减缩10dB。由物理梯度介电层作为正面材料,由磁性材料作为背面,可以组成混合RAM,以减弱从VHF波段到Ku波段的雷达反射。


  材料隐身技术的发展


  U-2和“口盖派”


  自RAM问世以来,在减缩RCS方面发挥了积极作用。1943年,德国Horten兄弟设计了HoIX飞翼,机翼为胶合板夹层结构,夹芯混合了胶水、锯末和粒状碳。德国原本计划在潜艇上使用RAM——一种叫作“Sumpf”的材料,即填充了碳粒的橡胶(部分来源说是磁性填料),准备涂在潜艇的通气管和指挥塔上。到了1945年,麻省理工学院的辐射实验室开发了一种填入碟状铝片的橡胶材料,称为MX-410,具有反雷达特性。


  为减少U-2飞机的RCS,洛克希德·马丁公司的臭鼬工厂和麻省理工学院的雷达专家尝试了多种方案。最终方案是加一层羰基铁氧体的涂层,使U-2的RCS降低了一个数量级。然而,这些方案最终都无法阻止俄罗斯跟踪到U-2飞机。


3


  U-2的后继者——美国中央情报局的A-12和美国空军的SR-71,这两款飞机利用突出的飞行速度和高度作为突防手段,但当局仍坚持要求臭鼬工厂减小这两款飞机的RCS。最终,研究人员在外形修形方面取得了重要突破。以SR-71为例,飞机总体外形设计得更薄,超薄的前机身“颌部”光滑连续地延伸到短舱、前缘和机身。这样的设计最终得出了连续光滑的机体和大体扁平的机身底部,使SR-71的RCS减缩了90%。


4


  另外,SR-71飞机上约有18%的材料是RAM。这些RAM都是掺有铁氧体的涂层,同时辅以石棉材料,用以抵抗高速飞行(Ma3)时产生的高温。垂尾几乎全部由RAM组成,向内倾斜15°。A-12的外边缘最初由三角钛片组成,但在后期,在机翼的锯齿边缘和机身颌部,都嵌入了包裹有玻璃纤维表面的阻性塑料蜂窝结构,当然形状也是三角片,这些三角片被称为 “口盖派”。SR-71“黑鸟”的RCS最终相当于一架“幼狐”(Piper Cup)J-3单翼机,约为4m2。


  “捕虫器”


  RAM的应用必须综合到雷达吸波结构设计中来。如果不综合考虑,会导致结构重量和体积增大。因此,隐身设计人员专门使用修形技术来控制对RCS贡献最大的镜面反射。第一架具有隐身能力的飞机F-117充分采用了表面修形来控制这类反射,大大节省了为控制腔体反射和表面波反射的RAM用量。


  F-117的蒙皮由铝合金制成,几乎都涂覆了RAM。最初所用的材料是类似于油毡的铁氧体聚合物薄板,这些薄板以不同的厚度黏结到机体的各个位置。采用RAM填泥或涂层来覆盖紧固件、密封间隙和使不均匀的表面平整。舱门和维护口盖在每次飞行前用金属胶带密封,并覆以RAM。起初,RAM的用量很少,因为很难控制厚度,而且需要使用有毒的溶剂。座舱玻璃涂了金,以尽量减少与蒙皮之间的阻抗过渡效应,同时阻止雷达波穿透座舱,因座舱里飞行员头盔的RCS比飞机大100倍。


  应特别注意发动机和进气道,因为从前向角度来考虑的话,这些位置贡献了飞机绝大部分的RCS。为了抑制这部分RCS,设计人员在F-117的进气口布置了一个玻璃纤维制成的吸波栅格,作用相当于一个“捕虫器”,即雷达电磁波能量被栅格吸收且不会逸散。更方便的是,这种材料具有导电性,可以加热以防结冰。这种结构材料中的填料可能是碳,含量从前往后越来越高。这样的话,入射波遇到的阻抗逐渐减弱,在传播过程中更易穿过这部分材料,也容易被吸收;如果反射波从后往回弹回时,会遇到强烈的不利阻抗变化,因而被反射回进气道深处,进气道也可能敷设有RAM。


  F-117项目中还有几项改进RAM方案的措施。隐身主涂层的喷涂方式改用了机器人系统,即一个喷涂吊架确定好飞机的位置,由计算机控制喷管来喷涂雷达吸波涂料。此外,设计人员还试图减少“前缘RCS”,并发展新的RAM蒙皮。曾经在一段时间内,F-117机队应用了多种隐身RAM方案,直到20世纪90年代末期一个标准化项目出台。


  边缘处理、镀银层和S形进气道


  在F-117之后,诺斯罗普·格鲁门公司研制了B-2隐身轰炸机,据称对外形隐身的依赖程度要大于F-117,而对RAM应用较少。由于F-117的外形修形工作已经将镜面反射处理得很好,因此,B-2的外形隐身可能指的是表面波抑制。B-2飞机的上下表面都是完整的曲面,外形没有不连续之处,因此不会产生很强的表面波,只有飞机边缘处除外。


  不过,随着技术进步,工程师们对边缘表面波有了应对之策。从B-2开始,美国所有的隐身飞机都呈现出独特的“边缘处理”风格,在机体边缘可以看到不同颜色标识的带状结构,这些结构实际暗藏玄机。在三角楔的内部是轻量材料,如玻璃纤维蜂窝结构,其中填充了碳,从外表面顶部向基部集中。因此,阻抗从机身结构尖锐边缘处开始下降,直到其后部导电表面,阻抗逐渐降为0。这种设计使得表面电流能够缓慢而非陡峭地流动,同时也被吸收。这样的布置抑制了RCS的三大贡献源:通过减缓表面电流的转捩,减少了边缘波散射;通过吸收电流,减少了行波反射;通过吸收入射的雷达波,减少了边缘衍射。每个方向的RCS都由此显著降低,特别是偏离法向的RCS。


  B-2飞机采用了相当厚度的吸波结构,由介质材料构成。然而,有报告指B-2还使用了一种磁性材料,可在VHF波段提供更好的吸波能力。为了加强锥度和尽量减少衍射,下方的导电表面可能缓慢过渡成楔形。


  虽然边缘处理能吸收表面电流,但无法完全阻止这些电流到达机身边缘处。如果表面不连续,可以防止电流到达机身边缘,但却会加强辐射。弹舱门、起落架舱门和维护口盖周围无可避免地存在缝隙,所以,B-2机体尽量减少了口盖数量。雷达能量能够诱使门和口盖产生表面电流,如果这些电流遇到不连续结构表面,尤其是口盖这种尺寸较小的结构,将会在其边缘处发射强烈的边缘波和行波。因此,这些缝隙必须用导电“填泥”和胶带连接起来。在最开始时,每架B-2需要用到大约915m长的胶带。另外,B-2的蒙皮有镀银层。不连续性结构的影响取决于结构尺寸和两边结构的导电性。银是传导性最强的金属,把银涂在不连续处可以最大限度地减少缝隙对RCS的影响,同时还能吸收电流,阻挡雷达穿透。


  为了抑制发动机的回波,B-2使用了内衬有RAM的S形进气道。形状和材料是这种RCS缩减技术的关键。RAM很薄,但进气道的弯度可使来波多次反射,增加了吸收效果。比起直线进气道,未经处理的S形进气道能将正中方向的RCS减小30dB,但在偏离中心线5°以外则毫无效果。如果增加RAM手段,正中处的RCS还可再减小30dB;而且无论是直线形还是S形进气道,这个效果的作用范围扩大到偏离中心线10°方向范围内。


  1990年以来,B-2的RAM方案发生了改变,重点转向减少维护负担和降低RCS,引入了质量更好的胶带,使铆缝更紧密,固化时间更短。2003—2010年期间,B-2还应用了先进高频材料(AHFM),即一种可用机械臂涂覆到口盖上的磁性RAM材料,可缩短常规维护时间。具有弹性的“刀片密封”材料成为部分口盖的导电桥,某些间隙周围环绕着窄带磁性RAM材料,被形象地称为“画框”。


  F-22继承了B-2的多种RCS减缩技术。F-22的外形由翼身融合体组成,可减少表面波。设计人员对机翼、操纵面和发动机进气口周边做了很明显的边缘处理。另外,F-22采用了S形进气道,其内表面敷设了RAM衬里;F-22还在一些口盖和阻抗间隙上应用磁性RAM。


  “魔法”层和RAM的未来


  B-2和F-22应用的隐身材料降低了飞机的RCS,但这些材料的耐久性不尽如人意,需要频繁更换,维护工作量很大,导致保障成本很高,占用的维修时间也很多,因而限制了飞机的可用性。RAM的填充材料是从几微米到几十微米直径不等的球形微粒,这些微粒聚集在一起,虽然可以提高吸波效果,却影响了耐用性,而且黏合到飞机上的难度不小。


  因此,从F-35项目一开始,洛克希德·马丁公司(洛马)就将隐身设计工作的目标定为:飞机达到预期的隐身水平,同时减少隐身的维护需求。以此为指导,F-35继续使用多种RAM技术,包括采用S形进气道、RAM衬里、边缘处理和处理缝隙的“画框”技术。从洛马的早期报告还可看出,F-35大大减少了外蒙皮的块数,此外,采用激光测量技术,使得结构装配精度非常高,报告称“99%的维护工作不再需要修复隐身表面”。F-35的目标很可能是大幅减少当前频繁进行的缝隙弥合工序。


  研发期间,项目负责人曾透露F-35可能比F-22隐身性能更好。但是,由于F-35的外形不如F-22规整,这一结论难以令人信服。为进一步宣传F-35,官方抛出一个所谓的秘密,宣称使用了某种材料:“导电层即是魔法所在”。2010年5月,负责F-35项目的执行副总裁的Tom Burbage披露,F-35采用了一项“纤维毡”技术,并将该技术描述成是“F-35项目最大的技术突破”。


  纤维毡可以取代许多RAM贴花,通过与复合材料蒙皮结合,提高了耐久性。F-35项目负责人进一步说明了这种材料的特性是“全向编织”,即能保证电磁特性不随角度而改变。熔入蒙皮后,这层材料能根据需要改变厚度,但洛马公司以保密为借口拒绝提供更多细节。虽然没有更多证据,但可以明确的是,“纤维毡”一词意味着这种材料用的是纤维而不是颗粒,纤维能使表面更强韧;而“导电性”这个词指的应该是碳基RAM。


  就在F-35负责人放出消息一个月后,洛马就申请了一项专利,专利中宣称首次采用新方法生产了耐用的RAM口盖。专利对方法做了具体介绍:可在玻璃、碳等纤维、陶瓷或金属上生长出碳纳米管(CNT),并可控制其长度、密度、管壁层数、可连接性甚至方向,而且控制精度达到前所未有的水平。注入了CNT的纤维能吸收和反射雷达波,各个CNT之间可连接,能为感应电流提供流动通道。


  更为重要的是,CNT能浸入铁或铁氧体纳米颗粒中。沿着纤维长度方向,CNT密度可以不同,且同质纤维能铺层或混合。具体应用包括:与空气阻抗匹配的正面层、1/4波长厚度用于对消、非连续或连续CNT密度梯度,以及在不同厚度采用不同的CNT密度,可提高宽频吸波能力。纤维能置于材料中的“任意方向”,适用的材料包括“织物、无纺纤维毡和纤维铺层”。


  专利称,基于CNT纤维的复合材料能吸收0.1MHz~60GHz范围内的电磁波,这是商用吸收体此前未曾达到的范围,并对L波段到K波段都有效果。专利没有具体说明该材料的吸收能力,但称这种材料制成的面板“在面对各雷达波段时几乎可视为黑体”。有趣的是,这种材料制成的正面层具有可设计特性,可使连接在其上的计算机读取到纤维中的感应电流,这样正面层就成为一台雷达接收装置。


  虽然专利中提到了隐身飞机,但没有特别提及F-35,而且未公布当时该材料的制造成熟度。不过,专利公布时正是披露“纤维毡”的时间,这个巧合不容忽视。当被问到基于CNT纤维的RAM是否在F-35上使用以及这项技术是否就是洛马负责人曾提过的技术时,洛马官方发言人表示,“对专利以外的内容不予置评”。


  即使CNT纤维不是F-35的“魔法”层,也代表了最新的RAM技术。不过,虽然这可能是RAM技术中最大的一项革新,但也不会是唯一的一项。工程师们一直在试验新材料。尤其值得关注的是,一些采用了亚波长几何结构的超材料,被赋予了自然界不存在的新特性,其在隐身领域的热度越来越高。总而言之,隐身技术在未来的前景,已经离不开RAM的发展。

 

更多关于材料方面、材料腐蚀控制、材料科普等方面的国内外最新动态,我们网站会不断更新。希望大家一直关注国家材料腐蚀与防护科学数据中心http://www.ecorr.org

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

关于国家科技资源服务平台

国家科技基础条件平台中心是科技部直属事业单位,致力于推动科技资源优化配置,实现开放共享,其主要职责是:承担国家科技基础条件平台建设项目的过程管理和基础性工作;承担国家科技基础条件平台建设发展战略、规范标准、管理方式、运行状况和问题的研究,以及国际合作与宣传、培训等工作;承担科技基础条件门户系统的建设与运行管理工作;参与对在建和已建国家科技基础条件平台项目的考核评估和运行监督工作。

国家科技资源服务平台相关网站


国家材料腐蚀与防护科学数据中心

国家高能物理科学数据中心

国家基因组科学数据中心

国家微生物科学数据中心

国家空间科学数据中心

国家天文科学数据中心

国家对地观测科学数据中心

国家极地科学数据中心

国家青藏高原科学数据中心

国家生态科学数据中心

国家冰川冻土沙漠科学数据中心

国家计量科学数据中心

国家地球系统科学数据中心

国家人口健康科学数据中心

国家基础学科公共科学数据中心

国家农业科学数据中心

国家林业和草原科学数据中心

国家气象科学数据中心

国家地震科学数据中心

国家海洋科学数据中心