图3中显示了ZneLi合金的微观结构。很明显,βphase的体积分数和形态都随之随着Li含量的变化而变化。对于锌-(0.1-0.2)Li合金,β-LiZn4铁主要位于锌晶界(图。3a和b),这与它们的平衡凝固过程一致,首先形成初始锌相,然后形成β相(图1a)。共晶体Zn-0.5Li合金的组成接近0.44%Li的共晶点(图1a),因此它主要由锌+β共晶体组成,其中分布着大的主β枝状结构(图3c)。锌从初级β相沉淀,形成一个独特的β/Zn层状结构(图3d)。当Li含量达到0.8%时,合金主要由分解成β/Znβ层状结构的大型原生β树突组成,其中分布为Zn+β共晶物(图3e和f)。测量了Zn-0.5Li和Zn-0.8Li合金共晶中相邻Zn和β相的间隔分别为2.3±0.5μm和0.8±0.2μm。锌-1.4Li合金为(图在背散射电子模式(BSE)下观察到,由于锌的原子质量比Li高于Li,锌沉淀物的对比度更亮。Zn-(0.5-1.4)Li合金的β/Zn层状结构中相邻的Zn相和β相之间的间距约为0.6±0.1μm,这与β中的锌含量对合金成分不敏感的事实非常一致(图。1a)
Fig. 3 shows microstructures of the ZneLi alloys. It is clear that both the volume fraction and the morphology of βphase change with Li content. For Zn-(0.1–0.2)Li alloys, β-LiZn4 particles locate mainly at Zn grain boundaries (Fig. 3a and b), which is consistent with their equilibrium solidification processes of forming primary Zn phase first and then forming β phase (Fig. 1a). The composition of hypereutectic Zn-0.5Li alloy is close to the eutectic point of 0.44% Li (Fig. 1a), so that it is composed mainly of Zn + β eutectics, among which distribute large primary β dendrites (Fig. 3c). Zn laths precipitate from the primary β phase, resulting in a unique β/Zn lamellar structure (Fig. 3d). When Li content reaches 0.8%, the alloy is mainly composed of large primary β dendrites decomposed into the β/ Zn lamellar structure, among which distribute Zn + β eutectics (Fig. 3e and f). The inter-spacings between adjacent Zn and β phase in the eutectics of Zn-0.5Li and Zn-0.8Li alloys are measured to be 2.3 ± 0.5 μm and 0.8 ± 0.2 μm, respectively. Zn-1.4Li alloy is (Fig. 3g) observed under backscattered electron mode (BSE), the Zn precipitates have a brighter contrast due to higher atomic mass of Zn than Li. The inter-spacings between adjacent Zn and β phase in the β/Zn lamellar structures of Zn-(0.5–1.4)Li alloys are about 0.6 ± 0.1 μm, which is well in agreement with the fact that the Zn content in β is insensitive to the alloy compositions (Fig. 1a)